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Abstract
The bus system in Cuernavaca, Mexico and its connections to random matrix
distributions have been the subject of an interesting recent study by M Krbálek
and P Šeba in [15, 16]. In this paper we introduce and analyse a microscopic
model for the bus system. We show that introducing a natural repulsion
does produce random matrix distributions in natural double scaling regimes.
The techniques employed include non-intersecting paths, logarithmic potential
theory, determinantal point processes, and asymptotic analysis of several
orthogonal polynomial ensembles. In addition, we introduce a circular bus
model and include various calculations of non-crossing probabilities.

PACS number: 02.10.Yn

1. Introduction

The bus transportation system in Cuernavaca, Mexico, has certain innovative and
distinguishing features and has been the subject of an intriguing recent study by M Krbálek
and P Šeba in [15, 16]. The situation is as follows. We quote from [15]:

In Cuernavaca there is no covering company responsible for organizing the city
transport. Consequently, constraints such as a time table that represents external
influence on the transport do not exist. Moreover, each bus is the property of the
driver. The drivers try to maximize their income and hence the number of passengers
they transport. This leads to competition among the drivers and to their mutual
interaction. It is known that without additive interaction the probability distribution
of the distances between subsequent buses is close to the Poissonian distribution and
can be described by the standard bus route model . . . . A Poisson-like distribution
implies, however, that the probability of close encounters of two buses is high (bus
clustering) which is in conflict with the effort of the drivers to maximize the number
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of transported passengers and accordingly to maximize the distance to the preceding
bus. In order to avoid the unpleasant clustering effect the bus drivers in Cuernavaca
engage people who record the arrival times of buses at significant places. Arriving
at a checkpoint, the driver receives the information of when the previous bus passed
that place. Knowing the time interval to the preceding bus the driver tries to optimize
the distance to it by either slowing down or speeding up. In such a way the obtained
information leads to a direct interaction between buses . . ..

In [15], Krbálek and Šeba describe their work in analysing the statistics of bus arrivals on
line 4 close to the city centre. They study, in particular, the bus spacing distribution and also
the bus number variance measuring the fluctuations of the total number of buses arriving at
a fixed location during a time interval T. Quite remarkably, Krbálek and Šeba find that these
two statistics are well modelled by the Gaussian unitary ensemble (GUE) of random matrix
theory (RMT) (see figures 2 and 3 in [15]). Our goal in this paper is to provide a plausible
explanation of these observations, and to this end we introduce a microscopic model for the
bus line that leads simply and directly to GUE.

As noted in [15] the number variance for the buses is in good agreement with the GUE
formula up to a time interval T = 3 (see figure 3 in [15]). As explained in [15], this behaviour
is consonant with the fact that each bus driver, using the information given by the recorder,
interacts with the bus immediately behind him and the bus immediately in front of him. In other
words, the primary interaction is a three-body interaction. As is well known, particle systems
modelled by GUE involve interactions between all the particles. This means, in particular,
that if we use GUE to model a system with nearest-neighbour (or more generally, short range)
interactions we should restrict our attention to statistics that involve only nearest-neighbour
(or short range) interactions. This is the case for the spacing distributions and hence one is
able to account for the good agreement between GUE and the observed data for this statistic
across the entire parameter range in [15]; this is in contrast to the number variance where, as
noted above, there is good agreement only up to T = 3.

The paper is organized as follows. In section 2, we introduce our model. In section 3, we
describe the double scaling limits of interest and indicate how to analyse these limits for our
model using standard asymptotic techniques from random matrix theory. Our main results on
the spacing distributions, as well as on the number variance, are stated at the end of section 3.
In section 4, we show how to modify the model to include alternative bus schedules.

Our analysis is based on the fact that certain nonintersecting path models lead to
random matrix type ensembles, more exactly, orthogonal polynomial ensembles. Various
manifestations of this phenomenon can be observed in [3, 10, 13, 14].

Finally, in view of the calculations that follow, we note that formula (4) in [15] for the
density of the spacing distribution is the so-called ‘Wigner surmise’ rather than the Gaudin
distribution. The Gaudin distribution (see (28)) gives the exact formula for the spacing
distribution: However, the Wigner surmise is known to approximate this exact formula to high
accuracy (see Mehta [18]).

2. Basic model

We introduce a ‘bare-bones’ model which captures the two salient features of the bus system:

(a) the stop–start motion of the buses, and
(b) the fact that the buses effectively repel each other, on the basis of information from the

recorders.
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Figure 1. Conditioned Poisson walks arriving at location 3.

The dynamics of our bus model takes place on the lattice Z as follows. Assume that there are
n buses. Fix N > n and T > 0: N denotes the end of the line which is reached by time T.
At time t = 0 the ith bus is at location 1 − i, 1 � i � n. The evolution of the bus process,
Lt = (

L1
t , · · · , Ln

t

)
, is given by n independent rate 1 Poisson processes conditioned not to

intersect for t ∈ [0, T ], and subject to the terminal condition LT = (N,N −1, . . . , N −n+1).
Consider buses arriving at a fixed point x ∈ {1, 2, . . . , N − n + 1} with consecutive arrival
times 0 < t1 < · · · < tk < T (see figure 1).

The probability density for the arrival times t1, . . . , tn, Ax(t1, . . . , tn) dt1 · · · dtn, is given
by

P[{(0,1−i)}→{(ti ,x−1)};no intersection]P[{(ti ,x)}→{(T ,N+(1−i))};no intersection] dt1···dtn
P[{(0,1−i)}→{(T ,N+(1−i))};no intersection] .

(1)

The fact that the numerator in (1) splits into a product of two factors is a consequence
of the strong Markov property of Lt : in particular, functionals of the parts of the paths
{(ti , x) → (T ,N − (1 − i)), 1 � i � n} depend only on the increments of the process
after some stopping times and hence, are independent of any functionals of the initial parts
{(0, 1 − i) → (ti , x − 1), 1 � i � n} of the paths. Note also that the endpoints (ti , x − 1),
1 � i � n, reflect the fact that the ith path jumps at ti , and not before. Similar dynamical
models with T = ∞ were considered in [14].

As we now show, each term in ratio (1) has a determinantal form of Karlin–McGregor
type [11].

Lemma 1.

P [{(0, 1 − i)} → {(ti , x − 1)}; no intersection] = det

(
e−tj

t x+i−2
j

(x + i − 2)!

)n

i,j=1

, (2)

P[{(ti , x)} → {(T ,N + (1 − i))}; no intersection] = det

(
e−(T −tj )

(T − tj )
N+(1−i)−x

(N + (1 − i) − x)!

)n

i,j=1

,

(3)

P [{(0, 1 − i)} → {(T ,N + (1 − i))}; no intersection] = det

(
e−T T N+i−j

(N + i − j)!

)n

i,j=1

. (4)
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Proof. Since the proofs of (2) and (3) are similar, we only prove (2). The proof is a variation
on the standard Karlin–McGregor argument [11]. Fix 0 < t1 < · · · < tn < T and define the
following stopping times:

τ1 = [
inf

{
s ∈ [0, t1] : L1

s = L2
s

}] ∧ T

τ2 = [
inf

{
s ∈ [0, t2] : L2

s = L3
s

}] ∧ T

· · ·
τn−1 = [

inf
{
s ∈ [0, tn−1] : Ln−1

s = Ln
s

}] ∧ T .

Observe that

det

(
e−tj

t x+i−2
j

(x + i − 2)!

)n

i,j=1

=
∑
σ∈Sn

sgn(σ )

n∏
i=1

P
(
L

σ(i)
ti = x − 1

)

=
∑
σ∈Sn

sgn(σ )E

(
n∏

i=1

11{Lσ(i)
ti

=x−1}

)

=
∑
σ∈Sn

sgn(σ )E




[
n∏

i=1

11{Lσ(i)
ti

=x−1}

] 
11τ1∧···∧τn−1=T +

n−1∑
j=1

11τ1∧···∧τn−1=τj <T







=
∑
σ∈Sn

sgn(σ )E

[
11τ1∧···∧τn−1=T

n∏
i=1

1l{Lσ(i)
ti

=x−1}

]

+
n−1∑
j=1

∑
σ∈Sn

sgn(σ )E

[(
11τ1∧···∧τn−1=τj <T

) n∏
i=1

11{Lσ(i)
ti

=x−1}

]

= P [{(0, 1 − i)} → {(ti , x − 1)}; no intersection]

+
n−1∑
j=1

∑
σ∈Sn

sgn(σ )E

[(
11τ1∧···∧τn−1=τj <T

) n∏
i=1

11{Lσ(i)
ti

=x−1}

]
, (5)

since the only nonzero term in the first sum is the term corresponding to the identity
permutation. We need only show that the second summation vanishes. Let ρj ∈ Sn be
the transposition (j, j + 1). By the strong Markov property for Lt ,

sgn(σ )E

[(
11τ1∧···∧τn−1=τj <T

) n∏
i=1

11{Lσ(i)
ti

=x−1}

]
+ sgn(ρjσ )

× E

[(
11τ1∧···∧τn−1=τj <T

) n∏
i=1

11{Lρj σ(i)

ti
=x−1}

]
= 0.

Since for each j the action of the given transposition ρj is an involution on Sn,

∑
σ∈Sn

sgn(σ )E

[(
11τ1∧···∧τn−1=τj <T

) n∏
i=1

11{Lσ(i)
ti

=x−1}

]
= 0.

This immediately implies that the second sum in equation (5) vanishes leaving only the desired
probability.
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The proof of the third equality (4) is just the standard Karlin–McGregor argument [11]:
in the proof of (2), simply replace the τi’s by

τ̃i = T ∧ inf
{
s ∈ [0, T ] : Li

s = Li+1
s

}
, for i = 1, . . . , n − 1, (6)

x −1 by N + (1− i), and set ti = T for 1 � i � n. This completes the proof of the lemma (1).
�

The determinants in (2) and (3) are multiples of Vandermonde determinants. Indeed,
using multilinearity of the determinant one shows that

det

(
e−tj

t x+i−2
j

(x + i − 2)!

)n

i,j=1

= e− ∑n
j=1 tj∏n

i=1(x + i − 2)!

n∏
j=1

tx−1
j

∏
1�i<j�n

(tj − ti) (7)

det

(
e−(T −tj )

(T − tj )
N+(1−i)−x

(N + (1 − i) − x)!

)n

i,j=1

= e− ∑n
j=1(T −tj )∏n

i=1(N + 1 − x − i)!

×
n∏

j=1

(T − tj )
N−x+1−n

∏
1�i<j�n

(tj − ti). (8)

Inserting (4), (7) and (8) into (1) and setting ỹj = tj
T

, one obtains

A(t1, . . . , tn) dt1 · · · dtn = Ã(ỹ1, . . . , ỹn) dỹ1 · · · dỹn

= CN,n,x

∏
i<j

(ỹj − ỹi )
2

n∏
j=1

ỹx−1
j (1 − ỹj )

N−x−(n−1) dỹ1 · · · dỹn, (9)

where CN,n,x = (∏n
i=1

1
(x+i−2)!(N−x+(1−i))!

)(
det

(
1

(N+i−j)!

)n

i,j=1

)−1
. The simple variable change

yj = 2ỹj − 1 induces the standard Jacobi weights on [−1, 1]:

C̃N,n,x

∏
i<j

(yj − yi)
2

n∏
j=1

(1 + yj )
x−1(1 − yj )

N−x−(n−1) dy1 · · · dyn, (10)

where C̃N,n,x = 2−nNCN,n,x . It is at this point that contact is made with RMT: if we view the
yj ’s as eigenvalues of an n × n Hermitian matrix, then (10) is precisely the joint probability
density for the eigenvalues of matrices in the so-called Jacobi ensemble. More precisely, for
n × n Hermitian matrices {M = M∗}, set

w(M) = det(1 + M)x−1 det(1 − M)N−x−n+1 det(χ(−1,1)(M)), (11)

where χ(−1,1)(M) is interpreted in terms of the standard functional calculus. Note that
w(M) is invariant under unitary conjugation of M,M → UMU ∗, for all unitary U.
Then Pn(M) dM ≡ 1

Zn
w(M) dM defines the Jacobi unitary ensemble, where dM =∏n

i=1 dMii

∏
i<j dMR

ij

∏
i<j dMI

ij and Zn is a normalization constant (here MR
ij and MI

ij

denote the real and imaginary parts of the ij entry of M). A standard calculation (e.g. Mehta
[18]) then shows that the distribution function for the eigenvalues, {λi}, of matrices in the
ensemble is given by (10) with the identification yi = λi . In summary, we see from (10) that
for finite N, n the arrival times for the buses at a location x are distributed like the eigenvalues
of a random matrix from the Jacobi ensemble. By techniques which are now routine in random
matrix theory (see [18]), (10) is amenable to asymptotic analysis in certain double scaling
limits. These limits (see section 3) correspond to GUE: the fact that Jacobi Unitary Ensemble
→ GUE in the double scaling limit is a particular example of the well-known phenomenon of
universality in RMT (see [6, 5, 17]).
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In the previous calculations we considered the arrival times t1, . . . , tn for the buses at a fixed
location, x. It is also of interest to consider the locations x1, . . . , xn at a fixed recording time t.
It turns out that the distribution of the xi’s is again given by a random matrix-type ensemble,
the Krawtchouk unitary ensemble. In [14], König, O’Connell and Roch discovered a similar
relation between the Krawtchouk unitary ensemble and Poisson random walks conditioned not
to intersect for all positive times. In analogy to (1), we have that the probability Lt (x1, . . . , xn)

for the positions x1 > · · · > xn of the buses at time t ∈ (0, T ) is given by

P({(0, 1 − i) → (t, xi)}; no intersection)P({(t, xi) → (T ,N + 1 − i)}; no intersection)

P({(0, 1 − i) → (T ,N + 1 − i)}; no intersection)
,

(12)

and by a Karlin–McGregor argument, similar to and even simpler than that in lemma 1, we
obtain the following:

Lemma 2

P ({(0, 1 − i) → (t, xi)}; no intersection) = det

(
e−t t xj +i−1

(xj + i − 1)!

)n

i,j=1

, (13)

P ({(t, xi) → (T ,N + 1 − i)}; no intersection) = det

(
e(T −t) (T − t)N+1−i−xj

(N + 1 − i − xj )!

)n

i,j=1

, (14)

P ({(0, 1 − i) → (T ,N + 1 − i)}; no intersection) = det

(
e−T T N+i−j

(N + i − j)!

)n

i,j=1

. (15)

Inserting (13), (14) and (15) into (12) we are led to the following formula for Lt (x1, . . . , xn)

[10]:

Lt (x1, . . . , xn) = [(N + n − 1)!]−n

[
n∏

i=1

(N + i − 1)!

(i − 1)!

]
(p − p2)−

n(n−1)

2

∏
i<j

(yj − yi)
2

×
n∏

j=1

(N + n − 1)!

yj !(N + n − 1 − yj )!
pyj (1 − p)N+n−1−yj , (16)

where yj = xj +n−1, p = t
T

and N +n−1 � y1 > · · · yn � 0. We have used the elementary
identity [

det

(
1

(N + i − j)!

)n

i,j=1

]−1

=
n∏

i=1

(N + i − 1)!

(i − 1)!
(17)

to derive (16). As indicated above, (16) corresponds to the Krawtchouk unitary ensemble.
An essential aspect in the analysis of the random particle ensembles (10) and (16) is

that they are determinantal, i.e. for each r = 1, 2, . . ., the rth correlation function for the
ensemble can be expressed in determinantal form det(K(xi, xj ))

r
i,j=1 for some appropriate

correlation kernel K(x, y) (see, for example, [2, 4, 18, 21]). It turns out that the fixed
time distribution (16), in particular, can be extended to a dynamical random particle system
which is also determinantal. Indeed, fix k times 0 < t1 < · · · < tk < T and let
x(j) = {

x
(j)

1 , . . . , x
(j)
n

}
, 1 � j � k, denote the positions of the buses at times tj , 1 � j � k.

Let pj = tj
T
, 1 � j � k. Then, using the Markov property of the bus system as above, we arrive
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at the following distribution for x(1), . . . , x(k):

Prob[x(1), . . . , x(k)] = const ·
∏
i<j

(
x

(1)
i − x

(1)
j

) n∏
i=1

p
x

(1)
i

1

x
(1)
1 !

× det
(
Vp2−p1

(
x

(1)
i , x

(2)
j

))
det

(
Vp3−p2

(
x

(2)
i , x

(3)
j

)) · · · det
(
Vpk−pk−1

(
x

(k−1)
i , x

(k)
j

))
×

∏
i<j

(
x

(k)
i − x

(k)
j

) n∏
i=1

(1 − pk)
N+n−1−x

(k)
j

(N + n − 1 − x
(k)
j )!

, (18)

where Vp(x, y) = py−x

(y−x)! if y � x and Vp(x, y) = 0 otherwise. Using a variant of the
Eynard–Mehta theorem [8] as described in [3], it follows directly that (18) is determinantal
with an appropriate correlation kernel Kti,tj (x, y). Further analysis yields the following block
integral representation for the kernel: for x ∈ x(i), y ∈ x(j),

Kti,tj (x, y) = 1

(2π i)2

∮ ∮
(pj − (1 − pj )t)

y(1 + t)N+n−1−yt−n

(pi − (1 − pi)s)x+1(1 + s)N+n−xs−n

ds dt

t − s
, (19)

where the integration contours are chosen as follows: s runs along a simple positively oriented
contour which goes around pi

1−pi
and does not contain −1; t runs along a simple positively

oriented contour which goes around 0; for pi � pj the s-contour contains the t-contour and
for pi < pj the s-contour lies inside the t-contour.

In the following section, we will analyse (10) and (16) asymptotically as N, n, x, t,

T → ∞. We plan to present the derivation and asymptotic analysis of (18) in a later
publication.

3. The double scaling limits

We will first describe the arrival statistics of the buses (10) in the limit N, n, x → ∞ where
n
N

→ ν, x−1
N

→ η, 0 < ν, η < 1 and ν + η < 1. This scaling limit is the natural one
from both the physical and mathematical point of view: the number of buses, n, should be
proportional to the length of the bus route, N + n, and the arrival point, x, should not be too
close to the beginning or the end of the route. The main result is that in the ‘unfolded’ scale
(see below), the Christoffel–Darboux kernel (equivalently, the two-point correlation function)
KN,n,x below, converges as N → ∞, n

N
→ ν, x

N
→ η to the so-called sine kernel (see below),

which is universal in random matrix theory. The proof of the convergence KN,n,x → K∞ for
the Jacobi ensemble was given first by Nagao and Wadati [19].

In RMT the analysis of the spacing distribution proceeds via the analysis of the gap
distribution (see, for example, [18, 7]):

PN,n ([c, d]) = Prob(yj /∈ [c, d], i = 1, . . . , n), (20)

There are three steps involved in the analysis of PN,n ([c, d]): (a) the first step is to express
PN,n([c, d]) in Fredholm determinantal form,

PN,n([c, d]) = det(I − K)L2[c,d], (21)

for some kernel operator K expressed in terms of certain appropriate orthogonal polynomials
(see, in particular, Tracy and Widom [22]); (b) the second step of the analysis is to determine the
appropriate scalings for c and d; this is accomplished by evaluating the so-called equilibrium
measure for the associated logarithmic potential theoretic problem [7, 20]; (c) the third step
involves a detailed asymptotic analysis of the appropriate associated orthogonal polynomials
in the double scaling limit.
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(a) For j = 1, 2, . . . , let p
N,n,x
j (y) = γ

N,n,x
j yj + · · · , γ N,n,x

j > 0 denote the
Jacobi polynomials obtained by orthonormalizing {1, y, y2, . . .} with respect to the weight

wN,n,x(y) = (1 − y)N−(n+x−1)(1 + y)x−1χ[−1,1](y). Set φ
N,n,x
j (y) = p

N,n,x
j (y)w

1
2
N,n,x(y),

for j = 1, 2, . . .. Then, the probability that there is no bus arrival in the interval of time
[aN,n,x, bN,n,x], PN,n([aN,n,x, bN,n,x]), is given by

det(I − KN,n,x)L2([aN,n,x ,bN,n,x ]), (22)

where

KN,n,x(z, z
′) = ln

φN,n,x
n (z)φ

N,n,x
n−1 (z′) − φN,n,x

n (z′)φN,n,x
n−1 (z)

z − z′ , (23)

and ln is given by the formula kn

kn+1

√
hn+1
hn

where hn and kn are constants arising in the three

term recurrence relation for general orthogonal polynomials; for the Jacobi polynomials, hn

and kn are given, respectively, by formulae 22.2.1 and 22.3.1 of Abramowitz and Stegun [1]
in the case α = N − (n + x − 1) and β = x − 1.

(b) By standard methods (see Saff and Totik [20] and Deift [7]), the equilibrium measure
can be determined explicitly for the problem at hand. It turns out that the support of the
equilibrium measure is an interval [a, b] ⊂ [−1, 1], and for fixed ν, η > 0 satisfying ν+η < 1,
the measure takes the form,

ψ(x) dx = η
√

(x − a)(b − x)

π
√

(1 + a)(1 + b)(1 − x2)
dx, (24)

where a and b satisfy the relations,
η√

(1 + a)(1 + b)
= − (η + ν − 1)√

(1 − a)(1 − b)
,

(1 + ν) = η√
(1 + a)(1 + b)

− (η + ν − 1)√
(1 − a)(1 − b)

,

and the radicals represent the positive square root. In the symmetric case where η = 1−ν
2 ,

b = −a =
(

1 −
(

1 − ν

1 + ν

)2
) 1

2

.

(c) Let τ0 ∈ (a, b). A standard calculation in RMT shows that the expected number
of particles per unit interval in a neighbourhood of τ0 ≈ nψ(τ0). Thus, changing scales
t �→ s := nψ(τ0)t , we see that the expected number of particles per unit s-interval is 1: this
process of rescaling is known as ‘unfolding’ the data. The probability that there are no bus
arrivals in

[
τ0 − s

ψ(τ0)n
, τ0 + s

ψ(τ0)n

]
becomes

det (I − Kn)L2[−s,s] , (25)

where

Kn(τ0, ξ, ρ)= ln
φN,n,x

n

(
τ0 + ξ

ψ(τ0)n

)
φ

N,n,x
n−1

(
τ0 + ρ

ψ(τ0)n

)− φN,n,x
n

(
τ0 + ρ

ψ(τ0)n

)
φ

N,n,x
n−1

(
τ0 + ξ

ψ(τ0)n

)
ξ −ρ

.

(26)

Analysing the asymptotics of the Jacobi polynomial as N, n, x → ∞ as above, we finally see
that

det(I − Kn)L2[−s,s] → det(I − K∞)L2[−s,s], (27)

where K∞(ξ, ρ) = sin π(ξ−ρ)

π(ξ−ρ)
, the so-called sine kernel. To compute the limiting conditional

probability that given a bus arrival at time s, the next bus arrives at time t we simply compute
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(see, e.g., [22])

lim
N→∞

1

ψ(s)

∂2

∂s∂t
det(I − KN)L2[s,t] = 1

ψ(s)

∂2

∂s∂t
det(I − K∞)L2[s,t]. (28)

Formula (28), the Gaudin distribution, gives the exact spacing distribution of RMT; as noted
in the introduction, this distribution in known to be well approximated by the Wigner surmise
used by Krbálek and Šeba [15] to analyse their observations of the bus arrival times.

In addition, using the fact that KN,n,x → K∞ in the unfolded scale, one easily sees that
the number variance, HN,n,x(·), converges, i.e.

H∞(s) := lim
N→∞, n

N
→ν, x−1

N
→η

HN,n,x

(
s

nψ(0)

)
(29)

exists. Moveover, H∞(s) is precisely the number variance for GUE, as given, for example,
in formula (16.1.3) in [18]. As s becomes large, H∞(s) ∼ 1

(π)2 (log(2πs) + γ + 1) where γ is
Euler’s constant, as noted in formula (5) of [15].

The analysis of the fixed time bus locations (16) as N, T , t → ∞, t
T

→ C1, n
N

→ C2

and T
N

→ C3 is very similar and follows the same general procedure (a), (b), (c) above. We
note that the Krawtchouk ensemble was first analysed in the same scaling limit by Johansson
in his analysis of the Aztec diamond [10]. Again, one finds that in the limit the statistics of
the bus locations is governed by the sine kernel.

4. The circular bus route

In the previous bus model, we considered the buses moving from one terminal at t = 0
to the second terminal at time t = T . In the final section, we consider a bus model on a
circular route. König, O’Connell and Roch (see again [14]) investigated a related model on
the discrete circle. Let ZM be the discrete circle with nodes labelled by {0, 1, 2, . . . ,M − 1}.
We will consider the case of k < M buses travelling along ZM . The buses start at positions
0 � N1(0) < · · · < Nk(0) � M −1 and evolve as independent Poisson processes conditioned
not to intersect. Let θ, θ̃ ∈ ZM and note that the transition probability on ZM for a single rate
1 Poisson process to travel from state θ to θ̃ is

pt(θ, θ̃) = e−t

∞∑
l=−∞

t θ̃−θ+lM

�(θ̃ − θ + lM + 1)
, (30)

where �(z) is the Gamma function. Let (θ1, . . . , θk) be a k-tuple of distinct elements of ZM

such that 0 � θ1 < · · · < θk � M −1. Let (θ̃1, . . . , θ̃k) be another k-tuple of distinct elements
of ZM such that there exists a cyclic permutation σ ∈ Sk for which (θ̃σ (1), . . . , θ̃σ (k)) satisfies
0 � θ̃σ (1) < · · · < θ̃σ(k) � M − 1. Given that the buses begin at positions θ1 < · · · < θk at
time 0, the probability that they are at locations θ̃1, . . . , θ̃k at time t, and have not intersected
in the mean time, is given by the determinantal expression

det(pt (θi, θ̃j ))
k
i,j=1. (31)

We prove this expression by adapting an alternate proof of the Karlin–McGregor formula from
the line to the circle as follows.

Let Z
k
M� be defined as the subset of Z

k/MZ
k for which there exists a cyclic permutation

σ ∈ Sk such that 0 � zσ(1) � zσ(2) � · · · � zσ(k) � M − 1. For f : Z
k
M� → R, define the

operator

Lf (z) =
k∑

i=1

[f (z1, . . . , zi + 1, . . . , zk) − f (z)], for z ∈ Z
k
M�

∖
∂Z

k
M� (32)
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and

Lf (z) = 0 if z ∈ ∂Z
k
M�.

As we will see, in order to prove the circular Karlin–McGregor formula (31), it is sufficient
to show that the function gθ̃ : [0, t]×Z

k
M� → R defined by gθ̃ (s, θ) = det(pt−s(θi, θ̃j )) is the

unique solution to the following equation equipped with terminal and boundary conditions:

(∂s + L)gθ̃ = 0, (33)

gθ̃ |[0,t]×∂Z
k
M�

= 0, (34)

gθ̃ (t, θ) = δθ̃ (θ). (35)

One checks easily that gθ̃ is a solution of (33). In order to check that the solution is unique, one
needs to prove a maximum principle for this equation, but this is easily done by mimicking
the standard proof for parabolic equations.

We now show that gθ̃ (0, θ) gives the desired probability. Let N(s) = (N1(s), . . . , Nk(s))

be the Poisson process on Z
k
M� with initial condition N(0) = (θ1, . . . , θk). Let τ = inf

{
s ∈

[0, t] : N(s) ∈ ∂Z
k
M�

}
. By Ito’s formula,

gθ̃ (s, N(s ∧ τ)) − gθ̃ (0, θ) −
∫ s∧τ

0
(∂r + L)gθ̃ (r, N(r)) dr (36)

is a martingale. Taking expectations, we obtain

gθ̃ (0, θ) = E
θg(s,N(s ∧ τ)) for s ∈ [0, t]. (37)

Letting s = t , (37) becomes gθ̃ (0, θ) = E
θg(t, N(t ∧ τ)). Using the definition of τ and the

terminal condition (35), we see that

gθ̃ (0, θ) = P
θ (t < τ and Nt = θ̃ ), (38)

which proves (31). Thus, for buses starting at locations 0 � θ1 < · · · < θk � M − 1 at time
t = 0, we have

Prob(buses are at locations 0 � θ̃1 < · · · θ̃k � M − 1 at time t; no intersection for all 0

� s � t) = P(t < τ and N(t) = θ̃ ) = gθ̃ (0, θ) = det(pt(θi, θ̃j))
k
i,j=1,

as desired.
This formula enables us to obtain, in particular, a Karlin–McGregor-type formula for the

solution of the following natural problem for the buses on a circular bus route. Imagine that
the initial locations of the buses are at θi = i − 1 for i = 1, . . . , k. Suppose that the buses
return to these locations at some fixed time T later. For any time 0 < t < T , it immediately
follows from the formula above and the Markov property that the distribution, Qt(θ̃1, . . . , θ̃k),
of the locations of the buses conditioned on arriving at θ1, . . . , θk at time T, is given by the
formula,

Qt(θ̃1, . . . , θ̃k) = det(pt (θi, θ̃j ) det(pT −t (θ̃i , θj ))

det(pT (θi, θj )
, (39)

into which we may now substitute (31). Observe that the number of rotations about the circle
is not fixed. We plan to investigate the asymptotic behaviour of this model in a future paper.

The circular bus route has some overlap with [9] which studies viscous walkers on the
discrete circle. A useful recent review of the viscous walker problem is given in [12].
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